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Abstract: Frequently, when imaging retinal vasculature with optical coherence tomography 
angiography (OCTA) in diseased eyes, there are unavoidable obstacles to the propagation of 
light such as vitreous floaters or the pupil boundary. These obstacles can block the optical 
coherence tomography (OCT) beam and impede the visualization of the underlying retinal 
microcirculation. Detecting these shadow artifacts is especially important in the quantification 
of metrics that assess retinal disease progression because they might masquerade as regional 
perfusion loss. In this work, we present an algorithm to identify shadowed areas in OCTA of 
healthy subjects as well as patients with diabetic retinopathy, uveitis and age-related macular 
degeneration. The aim is to exclude these areas from analysis so that the overall OCTA 
parameters are minimally affected by shadow artifacts. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement  

1. Introduction 
Optical coherence tomography angiography (OCTA) [1,2] is a non-invasive optical imaging 
modality for visualizing retinal circulation. It has emerged in recent years as an alternative to 
established technologies that require dye injection such as fluorescein angiography and 
indocyanine green angiography. Besides being fast and dye-free, other advantages of OCTA 
are depth-resolved visualization of retinal flow [3] and superior representation of 
microvascular details [4,5]. This last feature has allowed the development of analytical 
metrics with clinical application in detection of retinal vascular abnormalities [6–8]. 
However, some of these metrics such as vessel density or avascular area may become 
unreliable if parts of the scan are blocked by vitreous floaters, by the pupil or by other 
opacities anterior to the retina. 

OCTA commercial systems are generally equipped with software that analyzes the 
integrity of scans and computes a signal quality or signal strength index (SSI) to identify 
inadequate ones. The most common reasons for insufficient signal quality are excessive 
motion artifacts [9], poor beam focus [10] and media opacities (e.g. cataract). However, 
localized signal blockage by vitreous floaters or vignetting of a corner of the image by the 
pupil margin might not cause enough signal loss to deem the whole scan unsatisfactory. In 
such cases, shadows can be mistaken for focal perfusion loss in the clinical interpretation of 
the OCTA image and cause artefactual reduction in the overall vessel density or capillary 
density measured from the OCTA scan. Moreover, pupil vignetting and vitreous floaters are 
very common and difficult to avoid in OCTA images with larger fields of view. Therefore, it 
is preferable to identify and exclude these focal artifacts rather than discarding the entire scan. 

Anterior segment and vitreous opacities affect both the reflectance and flow signals in the 
OCTA scan. The signal-processing problem of shadow detection can be described as follows. 
In en face OCTA images, shadowed areas appear dark (reduced flow signal), but they also 
appear dark in atrophied and ischemic areas. One may then turn to en face structural OCT 
images to distinguish shadows from perfusion defect. However en face structural OCT 
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images are not reliable indicators of shadows either since atrophied and cystic areas also 
appear dark (Fig. 1). In previous works, we have proposed vascular pixel identification 
schemes that could compensate for partial shadowing by reflectance-adjusted thresholding 
[11,12]. Other approaches have amplified the flow signal values under drusen shadows in 
order to retrieve some of the signal underneath [13]. However, these methods fail in shadow 
areas with severe signal loss. This article describes a method to detect severe shadows that 
render flow signal unreliable and mark them for exclusion. 

 

Fig. 1. Illustration of the image-processing problem while segmenting shadows caused by 
opacities anterior to the retina. (A) En face 3 × 3 mm2 OCT angiogram of the superficial 
vascular complex of a patient with diabetic retinopathy (DR) containing vitreous floaters. 
White arrows on the upper left corner represent areas of apparent normal perfusion. A green 
arrow represents the area of perfusion loss caused by the disease whereas blue arrows represent 
loss of OCTA signal in shadowed areas. Because many diseases such as DR manifest real loss 
of perfusion, the loss of OCTA signal in (A) alone is not enough to discriminate regions 
shadowed by vitreous floaters. (B) En face mean projection of the retinal slab of the equivalent 
3 × 3 mm2 OCT reflectance image. A red arrow represents an example of intra-retinal fluid 
(see cross-sectional B-scan in (C)) that can cause dark areas in en face mean projections of 
OCT reflectance. A yellow arrow is an example of a dark area caused by a vitreous shadow 
(see cross-sectional B-scan in (D)). There is a need to distinguish true perfusion loss (green 
arrow) from shadowing (blue arrows) by analyzing tissue reflectance, but without falsely 
excluding areas of low tissue reflectivity such as fluid space (red arrow). An insight that we 
use in the rest of the article is that true shadowing affects reflectance signal throughout the 
entire image depth (yellow arrow in D), while low tissue reflectivity such as cysts are confined 
to a single layer (red arrow in C). 

In this article, we validate an algorithm that discriminates areas where the absence of flow 
signal is due to actual physiological processes associated with retinal disease rather than 
artefactual shadows. The algorithm is calibrated with manufactured shadows created by 
partially blocking the optical signal in the sample arm of the OCT instrument with opaque 
filaments of polylactic acid (PLA). We then found features of shadow pixels based on OCT 
reflectance as well as OCTA focal perfusion density and flow index in order to train an 
ensemble classifier that identified the normal from shadow pixels in the feature space of 
principal components. We validated the algorithm by scanning healthy subjects with 
progressively increasing signal attenuation using neutral density filters (NDF) between the 
eye and the instrument. Since NDFs were manufactured using a Schott glass substrate that 
reduces the intensity reaching the retina by different optical densities, their effect on signal 
strength can simulate that of cataracts attenuating light by multiple scattering in the nucleus of 
the crystalline lens [14]. We also tested the algorithm on healthy subjects with natural floater 
shadows and pupil vignetting, as well as on patients with diabetic retinopathy (DR), uveitis, 
age-related macular degeneration (AMD) and glaucoma. 
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2. Materials and methods 

2.1 Data acquisition 

Subjects were scanned with a commercial, 840-nm-wavelength, 70-kHz spectral-domain 
OCT system (Avanti RTVue-XR, Optovue Inc.) using AngioVue 3 × 3 and 6 × 6 mm2 OCTA 
scan patterns. Tracking was activated to reduce motion artifacts [9]. The 3 × 3 mm2 scans 
contained volumetric data at 304 x 304 A-lines. The 6 × 6 mm2 scans used the AngioVue 
high-definition (HD) format, which contains 400 x 400 A-lines. Flow signal was generated by 
the split-spectrum amplitude-decorrelation (SSADA) algorithm [1,15] from two repeated B-
scans at each lateral position. An orthogonal registration algorithm was used to merge two 
raster scans - one with horizontal-priority and one with vertical-priority. This algorithm was 
originally developed by MIT [16], and implemented by Optovue as their proprietary Motion 
Correction Technology (MCT) software. The merged volumetric OCTA scan contain both 
structural (reflectance) and angiographic (flow) data that is further analyzed. The merged 
volume will be referred to as a “scan” in the rest of this article. 

Eight scans of varying signal strength were obtained from one eye of each healthy subject. 
A first scan was acquired under optimal imaging conditions. Then six increasingly attenuated 
scans were acquired by placing different combinations of NDFs between the eye and the 
scanner, achieving various degrees of global attenuation with local effects in the OCTA signal 
retrieved. No physical compensation of the dispersion mismatch introduced by the glass could 
be done in the reference arm of the commercial OCT system, thus relying on the automatic 
numerical compensation by AngioVue’s software. A final unattenuated scan was acquired for 
repeatability assessment. 

Scans with manufactured shadows were obtained from one eye of ten healthy subjects. 
Two scans were first obtained under optimized imaging conditions from each eye. Then a 
scan with a focal shadow was obtained from each eye. The shadow was produced by placing 
a filament of PLA between the eye and the scanning optics in the sample arm of the 
instrument, avoiding the foveal avascular zone. 

Scans were also obtained from clinical research participants with known eye conditions. 
Two scans were obtained from one eye of these subjects. All participants were recruited from 
the Casey Eye Institute at the Oregon Health & Science University (OHSU). These scans may 
contain focal shadows, but must pass quality assessment to assure good focus, no excessive 
motion artifacts, and Q-score of at least 6 as assessed by AngioVue software version 
2017.1.0.151. The protocol was approved by the Institutional Review Board/Ethics 
Committee of OHSU and the research adhered to the tenants of the Declaration of Helsinki. 

2.2 Considerations on discrimination of flow vs. background signal in OCTA 

OCTA algorithms detect flow signal at each voxel ( , , )x y z by computing motion-associated 

changes of the OCT reflectance signal expressed as 

0( , , ; ) ( , , ; ) exp[ ( , , ; )]m m mA x y z t A x y z t i x y z t= Φ  in MB-scans of the same tissue section 

[17,18]. One early approach to tackle this task was to compute the variance of the phase Φ  
[19–22] or the speckle amplitude 0A  [23,24] to gain contrast between static tissue and flow 

voxels (with high signal variance). However, as OCTA developed, these algorithms had to 
adapt to two major problems. 

The first problem was that speckle variance increased with reflectance signal strength 
[25,26], thus yielding larger flow signal in tissue layers with strong reflectivity, as well as 
blood vessels. To highlight flow and reduce the influence of signal strength and tissue 
reflectivity, normalization was needed. One way to normalize signal strength is to divide 
speckle variance by the summation of the signal strengths squared, yielding a quantity called 
decorrelation (Eq. (1). Alternatively, the ratio between sequential signal amplitude could be 
evaluated, which was equivalent to taking the variance of logarithmic amplitude [25,27] 
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rather than the linear amplitude. Mathematically, all of these quantities – decorrelation, 
amplitude ratio, and phase variance – are measures of variation nominally unaffected by the 
average reflectance amplitude. 
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However, all of these OCTA algorithms still needed to take steps to eliminate the 
contribution from noise. Since a series of pure noise is maximally decorrelated, voxels where 
noise predominate over signal could be mistaken as flow voxels. For amplitude-based 
algorithms such as split-spectrum amplitude decorrelation angiography (SSADA) [28,29], a 
floor could be placed on the OCT signal amplitude so that voxels with very low signal also 
have very low decorrelation and logarithmic variance. For phase-based algorithms, the phase 
could be excluded from analysis if the magnitude falls below a threshold. Unfortunately, the 
noise-filtering step re-introduced a signal strength dependence to quantification of metrics 
with clinical utility derived from flow signal. As reflectance signal drops, both flow signal 
and noise are increasingly filtered out. We have found empirically that the vessel density – 
measured as the percentage of vascular pixels – scales approximately linearly with the 
logarithm of reflectance signal amplitude. This dependence could be reduced using a slab-
based compensation algorithm [11] or regression-based bulk-motion subtraction algorithm 
(rb-BMS) [12] over a wide range of signal strengths. In rb-BMS we have characterized the 
component of flow signal due to bulk motion and subtract it from OCTA data to obtain 
cleaned flow signal that is more purely associated with blood flow. This algorithm 
discriminates vascular from avascular voxels after accounting for reflectance and bulk 
motion. However, there comes a point when the signal-to-noise ratio is too low for these 
compensation methods to work. This generally occurs in shadow regions, where the OCT 
beam is blocked by the iris (pupil edge) or other media opacities (vitreous floaters, cataracts). 
The shadow detection algorithm we propose here identifies these regions and removes them 
from further analysis so that errors are not introduced into the evaluation of valid regions. 

2.3 Pre-processing 

Retinal layer interfaces were segmented from reflectance OCT B-scans by a directional graph 
search method [30] incorporated in the COOL ART OCTA signal processing tool developed 
at the Center for Ophthalmic Optics & Lasers (COOL) lab (Fig. 2(A)). The superficial 
vascular complex (SVC) was defined between the ILM and 80% of the ganglion cell 
complex, and its maximum projection along the depth axis allowed en face visualization of 
the superficial retinal flow. The inner retina was defined between the ILM and the outer 
boundary of the outer plexiform layer (OPL). The data in the inner and outer retina adding the 
choriocapillaris slabs were used in the thresholding scheme discussed as follows. 

The thresholding method used in the rb-BMS algorithm was applied to remove noise 
pixels in the avascular regions while preserving the vascular ones (Fig. 2 (B)). Since the scans 
had been already merged by Optovue’s registration software, the method in Ref [12]. was 
adapted to the data received after MCT processing. Briefly, the relationship between 
reflectance R and bulk motion decorrelation signal DBM was calculated for the pixels 
contained in avascular A-lines between ILM and Bruch’s membrane in both the horizontal 
and vertical priorities. Regression analysis in this step produced an estimate of the slope m, 
the intercept n and the RMS of the residual Re s of the fitting data from the fitted curve [12]. 
A threshold T (Eq. (2)) was then imposed on each voxel of the three-dimensional flow signal 
data to remove background signal leaving only true flow signal and their projection artifacts. 

 ( , , ) ( , , ) 2 Re RMST x y z mR x y z n s= + + ×  (2) 
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superficial vessel shadows, intra-retinal fluid, soft drusen, pigment epithelium detachment or 
the foveal avascular zone, all of which were not related to anterior opacities. It is preferable to 
construct a different reflectance reference normR defined in Eq. (3) 

 max( ( , , ) ) / ( , )norm scan controlz
R R x y z R x y=  (3) 

where the mean projections of logarithmic reflectance scanR in both the inner (I, ILM to OPL) 

and the outer (O, outer retina + choriocapillaris (CC)) slabs were first normalized to the 
position-dependent averaged reflectance maps of the same two slabs in the healthy population 
( controlR ) and { , }z I O∈ . Then, the maximum value of the two normalized projections was 

used at each position to generate normR (Fig. 3(C1-C5)). 

 

Fig. 3. Illustration to support the rationale used in the selection of normR (Eq. (3)) as a feature 

containing information of the positions of shadows. Columns represent scans from healthy 
(A1-C2); diabetic retinopathy (DR, A3-C4) with intra-retinal fluid; and age-related macular 
degeneration (AMD) with pigment epithelium detachment (PED) subjects (A5-C5). Mean 
projection of the OCT reflectance within the retinal slab (A1-A5) frequently shows 
inhomogeneous brightness, containing dark areas caused by low internal reflectance (white 
arrows) such as intra-retinal fluid (subjects #3 and 4) and PED (subject #5). These need to be 
distinguished from true shadows such as those caused by vitreous opacities (yellow arrows). 

(B) shows representative B-scans at the positions of arrows. The corresponding normR  images 

in (C1-C5) are dark only when all retinal layers are dark, which corresponds better to actual 
shadows. 

In addition to the map normR , an additional feature map was generated from the reflectance 

image by finding the standard deviation along the axial direction for a slab that included the 
retina and choriocapillaris (Fig. 4). This feature exploits the large variance that exists in the 
reflectance of retinal layers even in the presence of pathologies (e.g. Figure 3(B3, B4, and 
B5)), as opposed to the tissue under shadows (e.g. Figure 3(B2)) where all layers are 
attenuated. A map of the averaged standard deviation in the control group 

40

_
1

1
( , ) ( , )

40std control std j
j

R x y R x y
=

=  was used for normalization, generating the second feature 

map _std normR that was normalized to _std controlR  and filtered by a moving average kernel of size 

9 × 9 pixels. 
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Fig. 4. Illustration of the standard deviation of reflectance in shadows ( _std normR ). (A) OCTA 

of the superficial vascular complex (between ILM and 80% of the ganglion cell layer) of a 
patient with birdshot chorioretinopathy, a form of uveitis with characteristic abundance of 
vitreous floaters. (B) Mean reflectance of the retinal slab between inner limiting membrane 
(blue boundary in (D)) and Bruch’s membrane (orange boundary in (D)). (C) Standard 
deviation of the reflectance in each A-line between the inner limiting membrane and the lower 
boundary of the choriocapillaris, normalized to the control group. (D) Lower variation of the 
reflectance along the axial direction is appreciated (white arrows) in a cross-sectional 
visualization of a B-scan affected by a shadow (dashed line). 

We then turned to the OCTA image to derive additional features useful in the pixel 
classification task. Since the OCT and OCTA images are both produced from the same 
optical signal, they are perfectly registered and we could further associate the position of dark 
areas in normR and _std normR  with areas of OCTA flow signal loss. Two additional features were 

associated with shadows in OCTA. First, the average decorrelation value of the inner retinal 
slab was calculated in areas of 9 × 9 pixels, defining focalFI  (Fig. 5). Shadows increasingly 

cause filtering out of voxels with low reflectance, affecting the local flow index. The local 
FI maps were also normalized to the reference ( , )controlFI x y of normal subjects by Eq. (4), 

where ( , , )D x y z is the flow signal, 
z

represents average over the axial dimension ( z ∈
ILM: OPL) and ( , )x yϖ is a 3 × 3-pixel moving average window centered at position ( , )x y . 

 
( , , ) ( , )

( , )
( , )
z

focal
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D x y z x y
FI x y

FI x y

ϖ
=  (4) 

 

Fig. 5. Illustration to support the rationale used in the definition of the focalFI feature. (A) 

OCTA of the superficial vascular complex of a patient with birdshot chorio-retinopathy. (B) 
Mean reflectance of the retinal slab between inner limiting membrane (blue boundary in (D)) 
and Bruch’s membrane (orange boundary in (D)). Shadows are evident in the lower right 
corner of the scan. (C) Normalized inner-retinal local flow index (FI) map, where FI in the 
shadowed area is reduced to about 40% of the normal flow index at the respective positions. 
(D) Cross-sectional visualization of a B-scan affected by a shadow (dashed line). 

The three maps generated thus far ( normR , _std normR and focalFI ) were used as features fed 

to an ensemble classifier that segmented the shadow area. The supervised machine learning 
method needed a labeled training data set. The training data set consisted of two groups; one 
composed by healthy subject scans containing manufactured shadows and the other by DR 
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scans without vitreous floaters or vignetting. Shadows appearing naturally in either healthy or 
diseased eyes were not used for training owing to unreliable manual assignment of labels, 
which will be discussed further in section 2.5. The first group forming the training set 
contained the ten scans of healthy eyes with manufactured shadows of different severities 
(Fig. 6). The second group consisted of 17 scans of one eye of DR subjects. This group was 
included in the training set with the purpose of preventing the detection of avascular areas 
with inherently low focal flow index and typically lower reflectance than young, healthy 
subjects. It should be noted that this inclusion increased the class imbalance to approximately 
9-to-1, a problem that was alleviated by choosing a random-undersampling (RUS) boost 
forest modality. The size of the training data set was 2.5 × 106 vectors in feature space 3. 

Principal component analysis (PCA) was used to investigate the feasibility of dimensionality 
reduction. The expressed variances were sufficiently high (66.8%, 26.8% and 6.4%) after 
PCA to justify the need of all dimensions in the classification routine. 

 

Fig. 6. Shadows were manufactured on healthy eyes by partially blocking the scanning beam 
with PLA filaments of different diameters (A1-D1 and A2-D2) and used to mimic clinical 
shadows in the training set of an ensemble classifier. (A-C) show the en face projections of the 
superficial, intermediate and deep vascular plexuses found in the inner retina. (D) shows the en 
face projection of the OCT reflectance in the retinal slab. 

2.5 Generation of training labels 

To avoid the subjectivity inherent to manual grading of shadow positions in clinical scans 
such as Figs. 1(A), 4(A) and 5(A), the following method was designed to label the positions 
of the shadows on the healthy subject scans in Fig. 6. Focal vessel density maps focalVD were 

generated by calculating the percentage of vascular pixels in areas of 11 × 11 pixels. Rigid-
body registration was applied on scans corresponding to the same eye to overlap the center of 
their FAZ. Images of right eyes were flipped before averaging in order to overlap nasal and 
temporal sides with equivalent local density and reflectance characteristics of left eyes. From 
the three scans available per subject (Fig. 7(A-C)) focalVDΔ was found for the two scans 

acquired under optimal conditions (Fig. 7(A-B)) as well as between an optimal scan and a 
manufactured shadow (Fig. 7(B-C)). For each subject, a lower threshold was set on the 
shadowed scan at two standard deviations of ( )focal B AVD −Δ of the optimal scans and the points 

with ( )focal B CVD −Δ  below threshold in the manufactured shadows were labeled with a value of 

1. The remaining points were assigned a value of 0. This labeling mechanism should be more 
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robust than manually drawing the approximate boundaries of shadows and normal areas in 
Fig. 6 based on the subjective perception of a human grader. There was good contrast 
between shadow and non-shadowed regions for all three features forming the training set 
(Fig. 7(D-O)). Once the classes were assigned (Fig. 7(P)), the RUS boost classifier with 100 
decision trees was trained at a learning rate of 0.05. Finally, a morphological opening 
operation was applied to remove areas smaller than 37 connected pixels, which is the mean 
normal intervascular space outside the FAZ. 

 

Fig. 7. Method based on statistical measures of healthy eye scans used to assign objective 
labels (shadow (1) vs non-shadow (0)) on the training data set. Three scans were acquired per 
eye, two under optimal imaging conditions (A, B) and one creating a manufactured shadow by 
partially blocking the scanning beam (C). Local vessel density maps ( , )VD x y  were generated 

from A, B and C. The position-dependent ( ) ( , ) ( , )focal B A B AVD VD x y VD x y−Δ = − and 

( ) ( , ) ( , )focal B C B CVD VD x y VD x y−Δ = −  were calculated taking B as reference. The 

corresponding focalVDΔ values were related to the features used by the RUS boost ensemble 
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classifier ( normR
in D-G, _std normR

in H-K and focalFI
in L-O). Feature maps on the left (D, 

H, L) correspond to the scan in A whereas the ones on the right (G, K, O) correspond to the 

scan in C. VDΔ was independent from all features for the scans obtained under optimal 
conditions (E, I, M) whereas a strong dependency was observed in the scans with 
manufactured shadows (red arrows in F, J, N). Blue arrows in F, J, and N indicate normal 

areas. A lower threshold set at two standard deviations of ( )focal B AVD −Δ was set on 

( )focal B CVD −Δ to label the shadow points (yellow area overlay in P). Maps derived from the 

reflectance image were represented in grayscale whereas maps derived from the OCTA image 
were represented in color. 

2.6 Software validation 

Evaluating the software performance on scans with clinical shadows is difficult because 
human graders cannot confidently extract its boundaries from en face images. First, as 
expressed above, other structures related to pathologies can contribute to darkness in the 
projection of reflectance and/or absence of vasculature in the projection of flow. For a human 
expert to generate an accurate ground truth that separates real shadows from retinal 
degeneration they would need to grade hundreds of reflectance B-scans per volumetric scan, 
while simultaneously examining those positions on en face projections of OCTA signal, 
which is not feasible and remains subjective. Second, as noted in Eqs. (3) and (4), the 
definition of shadows proposed here includes a normalization to the mean projection of a 
population of healthy subjects. Therefore, its classification only depends on pixel 
characteristics and not on a contrast between the features of pixels on both sides of the 
boundary. This means that in principle, in a scan significantly below the required minimum 
quality index (e.g. a patient with severe cataracts), the entire area could be potentially 
detected as a shadow, independently of whether floaters and vignetting exist or not. These 
cases should correspond to SSI values typically recommended for scan exclusion (SSI < 55). 
Thus, comparison of software performance with manual grading by two experts in OCTA 
analysis was performed on clinical shadows of healthy subjects only, which are generally 
bright scans with good contrast between localized shadows and neighboring areas (e.g. Figure 
3 A2-C2)). 

In addition, the software was applied on the data acquired from the NDF experiment 
described in section 2.1. Because scans in this experiment were acquired by attenuating the 
optical signal in the sample arm, some OCTA signal should be irretrievable and result in 
reduced apparent vessel density (percentage of vascular pixels in en face images). We 
evaluated whether excluding the FAZ and the regions detected as shadows would make the 
vessel density of these scans independent of SSI. 

3. Results 
The algorithm was tested on a separate set of 10 healthy subjects not used in the generation of 
normalizing control maps. The algorithm was also run on five subjects with uveitis, five 
subjects with DR and one subject with AMD showing shadowed areas. In addition, we 
included three subjects with AMD and four subjects with glaucoma that did not show vitreous 
floaters with the purpose of evaluating whether retinal atrophies would cause erroneously 
detected shadows. 

The accuracy of the RUS boost ensemble in the manufactured shadow data set was 99.1%, 
the sensitivity was 93.0% and the specificity was 99.0%, evaluated by 5-fold cross-validation. 
For the group of clinical shadow scans the sensitivity and specificity of pixel-wise 
classification were 91.6% and 86.9%, taking the manual segmentation of one of the expert 
graders as ground truth. The other expert grader performed with a sensitivity of 87.2% and a 
specificity of 93.3% with respect to the same reference. 
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3.1 Performance on healthy subjects 

The pre-processing step of vascular vs background pixel discrimination by rb-BMS 
successfully compensated for the dependence on reflectance on the two scans taken under 
optimal imaging conditions (without NDF) from healthy subjects (Fig. 8(A)). The vessel 
density was independent from SSI (Pearson’s r = 0.0669, p = 0.77). The repeatability between 
two scans on the same eye was 1.67%, evaluated by the pooled standard deviation. The mean 
VD was 51.4% and the standard deviation of the group was 3.6%. Noticeably, rb-BMS was 
unable to maintain the independence from SSI (r = 0.5220, p<0.01) when part of the OCTA 
signal was irretrievable in scans with optical signal artificially attenuated by various 
combinations of NDFs (Fig. 8(B)). Then, by applying our shadow exclusion algorithm we 
were able to retrieve areas where perfusion analysis could be considered reliable, 
demonstrated by the significantly reduced dependence of VD on SSI (Fig. 8(C), r = 0.1741, p 
= 0.14) and a similar VD distribution (mean = 50.7%, standard deviation = 3.5%) with respect 
to the data acquired without NDFs (Fig. 8(A)). The area of manufactured shadows formed by 
increasingly higher attenuation of the optical signal with NDFs was inversely proportional to 
the SSI (Fig. 8(D)). 

 

Fig. 8. Performance of the algorithm on 3 × 3 mm2 scans of 10 healthy subjects acquired by 
intentionally reducing the signal strength with different combinations of neutral density filters 
(NDF) placed between the eye and the instrument. (A) Shows that the vessel density of the 
scans acquired without NDF is independent from signal strength index (SSI) after being 
processed by the reflectance-adjusted thresholding scheme in the regression-based bulk motion 
subtraction (rb-BMS) algorithm. (B) Shows the vessel density of all scans acquired in this 
experiment, demonstrating that rb-BMS is not able to retrieve all signal after a certain level of 
attenuation. (C) is the vessel density of all scans in (B) by excluding the areas detected with the 
shadow segmentation algorithm. Note that by only considering the areas with reliable OCTA 
signal for quantification, the vessel density was again independent from SSI. (D) Inverse linear 
relationship between shadow area and SSI in the NDF attenuation experiment, R = −0.67, 
p<0.01. 

Floaters cast by vitreous shadows and affecting clear visualization of vasculature were 
detected successfully on 3 × 3 and 6 × 6 mm2 scans of three of the 10 healthy subjects in the 
test set (one representative case in Fig. 9). En face OCT angiograms showed intact retinal 
vasculature after the subject had their floaters removed in a vitrectomy procedure (Fig. 9(C1-
C2)). The corners of the 6 × 6 mm2 scan were still affected by vignetting (Fig. 9(C2)). 
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Fig. 9. Shadows from vitreous floaters on 3 × 3 mm2 (A1-B1) and 6 × 6 mm2 (A2-B2) macular 
OCTA scans of a healthy subject. Yellow areas overlapped onto en face projections of the 
superficial vascular complex represent the shadowed areas automatically detected by the 
algorithm. (C1-C2) represent 3 × 3 mm2 and 6 × 6 mm2 OCTA of the same subject after having 
the floaters removed in a vitrectomy. Floaters disappeared, revealing the intact vascular 
network on the superficial vascular complex. The vignette corner area in (C2) is due to partial 
blockage of the optical signal by the pupil. 

3.2 Performance on DR 

Diabetic retinopathy patients can develop the same type of floaters that appear from normal 
aging but can also show additional optical signal absorption in the vitreous caused by 
hemorrhage from neovascular vessels in the proliferative stage of the disease. OCTA from 
five of the DR subjects recruited exhibited shadows from vitreous floaters in macular window 
of 3 × 3 mm2 along with real avascular areas adjacent to them (Fig. 10). These vitreous 
shadows were successfully detected by the algorithm. 
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Fig. 10. Areas of vitreous floater shadows detected on two DR subjects (rows). Scans 
comprised an area of 3 × 3 mm2. The first column represents en face angiograms of the 
superficial vascular complex (SVC). The apparent loss of perfusion might be caused either by 
the disease or by the shadows cast by overlying vitreous floaters. The second column shows 
the cross-sectional view of the reflectance B-scans at the positions marked with dashed lines. 
White arrows represent non-shadowed areas with intra-retinal fluid, whereas blue arrows 
represents shadowed areas. The third column represents the shadow area detected by the 
algorithm (yellow), overlaid on the en face OCT angiogram. Regions with apparent loss of 
perfusion outside the yellow area can be confidently measured as avascular areas. 

3.3 Performance on uveitis 

Uveitis is an inflammatory disease affecting the uvea, which comprises the iris, the ciliary 
body and the choroid. It can be caused by infectious, autoimmune or systemic diseases, or it 
could have unknown causes (white-dot syndrome). Uveitis can affect one or all of these 
ocular structures, but only intermediate uveitis and pan-uveitis cause inflammation of the 
cells in the vitreous humor, thereby creating floaters. Owing to the high prevalence of 
floaters, it is important in uveitis to distinguish what areas with apparent loss of perfusion 
represent actual capillary loss and what areas are shadows. Vitreous shadows were identified 
on five of the 24 subjects with uveitis participating in this study. Our algorithm proposed 
herein succeeded in detecting both vitreous floater shadows and vignetting in uveitis (Fig. 
11). 
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Fig. 11. Areas of vitreous floater shadows detected on two uveitis subjects. En face 
angiograms and OCT reflectance represent an area of 6 × 6 mm2 projected over the superficial 
vascular complex (SVC). Blue arrows represent areas with apparent loss of perfusion that were 
caused by shadows from either vitreous floaters (subjects 1 and 2) or pupil vignetting (subject 
2) and were successfully detected by the algorithm. Green arrows represent vitreous floaters 
that cast shadows on the reflectance projection but did not affect the angiograms and hence, 
were not detected. Loss of perfusion on the upper-left corner of the angiogram of subject 1 was 
not caused by corner vignetting and was not detected by the algorithm. 

3.4 Performance on AMD 

Another disease in which shadow artifacts are very common is AMD because patients are 
elderly subjects. The high prevalence of drusen and RPE atrophies in AMD poses a special 
challenge to the current algorithm. In these structures, the projected reflectance values would 
be low due to soft drusen, pigment epithelium detachment or atrophy of the RPE layer. In Fig. 
12, we demonstrate that the current algorithm was robust to the peculiarities of AMD, as it 
was able to detect shadows successfully in scans with drusen and in areas surrounded by RPE 
dystrophy. 

 

Fig. 12. Representative scan with drusen and RPE dystrophy showing software performance on 
one age-related macular degeneration eye. This example addresses the question of whether 
shadows can be detected on regions of RPE dystrophy. (A) Shows regions of apparent loss of 
perfusion in en face view of the superficial vascular complex (center-left to lower-left corner). 
The white dashed line indicates the location of the cross-sectional view represented in (B). The 
blue arrow identifies the presence of a shadow from vitreous floaters. Red arrows indicate that 
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the area exhibits increased optical signal penetration into the choroid caused by absence of 
retinal pigment epithelium. Shadows were nevertheless successfully detected in (C). 

3.5 Effect of MCT registration on shadows 

As mentioned above, the angiographic image produced by the AngioVue instrument is 
generated by MCT, a software that performs the 3D registration and merging of two separate 
OCTA images acquired in the horizontal and vertical priority directions. While the purpose of 
MCT is to remove bright lines caused by microsaccadic eye motion during scanning, a side 
advantage is the retrieval of some OCTA data missing underneath anterior opacities (Fig. 13). 
Vitreous floaters moved between the x-priority and y-priority scans owing to blinks and 
saccades, evidenced by the duplicated appearance of their shadows in the en face OCT image 
after MCT. Some OCT and OCTA signal lost in one scan (either x-fast or y-fast) could 
consequently be retrieved from the other if shadows did not overlap between the two scans. 

 

Fig. 13. Effect of motion correction technology (MCT) in shadow signal retrieval on a 3 × 3 
mm2 scan of a diabetic retinopathy subject. Dashed lines on en face OCTA and OCT views 
indicate the location of the cross-sectional B-scan represented in the third column. As shown in 
rows 1 and 2, the x-fast and y-fast scans exhibit completely loss of OCT signal under vitreous 
shadows. Owing to the mobility and small size of vitreous floaters, the OCTA signal could be 
completely retrieved by MCT in the third row. 

4. Discussion and conclusions 
In the past years, numerous clinical trials have started to exploit the potential of OCTA in 
detecting early changes in the diseased retina. These clinical trials rely greatly on the 
possibility of quantifying retinal perfusion changes by metrics such as avascular area, vessel 
density, flow index, FAZ acircularity, fractal dimension, among others. Artefactual shadows 
could obviously affect the interpretation of OCTA quantification, resulting in false diagnosis 
of perfusion defects or reduced capillary density. Since the flow signal cannot be computed 
on shadow regions, there is no way to compensate this effect; thus, these regions should be 
objectively detected and excluded from the quantitative measurements. 
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We have proposed an algorithm to detect shadows cast by vitreous floaters or pupil 
vignetting onto OCTA of the retina and thereby causing artefactual appearance of perfusion 
loss. This shadow detection algorithm is most valuable when used in conjunction with rb-
BMS algorithm, which recovers vessel information in areas where shadows are not too 
severe. It would improve the confidence with which OCTA could be used to diagnose and 
evaluate a wide variety of diseases that affect the retinal circulation in the general population 
such as DR, AMD, glaucoma or inflammatory diseases such as uveitis. This is important as 
the older patient who might have these diseases also often have cataracts, vitreous opacities, 
small pupil, dry eye – conditions that could produce shadow artifacts that confound the real 
perfusion loss on OCTA in retinal and optic nerve diseases. 

Our software relies on detecting the areas where shadows overlap on OCT reflectance and 
OCTA signals. The OCT reflectance features selected here allowed tracking areas that are 
dark at all retinal depths, which is rarely a manifestation of pathologies and an essential 
attribute of shadows. It thus helped to make the software robust to different types of retinal 
degenerations. They were successful in cases where the disease attacked the ganglion cell 
complex such as glaucoma (Fig. 14(A1-D1)) as well as in those where the outer retina and 
choriocapillaris are compromised, such as AMD (Fig. 14 (A2-D2)). 

 

Fig. 14. Demonstration of software performance in clinical cases with retinal degeneration and 
no vitreous floaters. Defects in the retina should not conduce to erroneous detection of 
shadows. (A1-D1) show a scan from a patient with glaucoma exhibiting severe ganglion cell 
complex atrophy and (A2-D2) shows a scan from a patient with age-related macular 
degeneration (AMD) exhibiting severe outer-retina/choriocapillaris atrophy. (A1-A2) are the 
respective 6 × 6 mm2 and 3 × 3 mm2 OCTA en face projections of the superficial vascular 
complex, showing perfusion loss caused by the disease in glaucoma and intact vasculature in 
AMD, since the inner retina is not affected. (B1-B2) are the mean projection of the OCT 
reflectance within the retinal slab, showing dark areas in the atrophic areas. (C1-C2) show 
cross-sectional views of B-scans of interest at positions marked with the dashed line. Red 
arrows indicate regions of atrophy whereas white arrows indicate regions of non-degenerated 
or mildly affected retinal tissue. (D1-D2) show the Rnorm maps corresponding to each case, in 
which the reflectance values are more homogeneous and above level of Fig. 3 (C2-C3) 
preventing the misclassification of the atrophic areas as vitreous shadows. 

In addition to floaters and vignetting, cataracts are also a significant source of signal loss 
in the aging population. The NDF experiment is a simulation of the effect of cataracts on 
signal quality. We observed that valid areas used for vessel density measurement decreased 
along with the increase of the signal attenuation. This can be explained by the progressive 
loss of flow signal in the voxels with very low reflectance. Since all OCTA algorithms 
necessarily impose a reflectance threshold before generating the flow signal, the signal loss in 
the NDF experiment could not be entirely retrieved by rb-BMS. In cases of extreme 
attenuation, only the faster flow (higher decorrelation values in the nasal side of the scan) 
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could be retrieved. Although some signal appeared to be reliable in those extreme cases, if the 
area excluded was too big, the analytic area might not be enough to draw useful information 
from the scan and it should be discarded entirely. Our results in Fig. 8(D) seem to agree with 
the generally accepted signal strength standard using the SSI metric. 

One limitation of the method’s evaluation was the small number of subjects participating 
in it. Only three healthy subjects with natural floater shadows could be recruited. A second 
limitation was that vignetting artifacts at the corner of OCTA images were very rare in 3 × 3 
mm2 scans and only vitreous floater shadows could be studied within this field of view. 

In summary, we have developed an algorithm to detect shadowed areas by anterior 
opacities in OCTA of the retina. The software showed good performance on 3 × 3 and 6 × 6 
mm2 scans of healthy, DR, AMD and uveitis cases by objectively identify shadows from 
vitreous floaters as well as pupil vignetting. Although these artifacts are very difficult to 
prevent in clinic, this software can be potentially useful to improve the reliability of OCTA 
parameters by excluding shadow areas from the analysis. As the field of view available for 
OCTA increases over time, these shadow artifacts are expected to become more prevalent in 
en face images and their detection and subsequent exclusion should become even more 
critical. 
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